14+x^2=176

Simple and best practice solution for 14+x^2=176 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 14+x^2=176 equation:



14+x^2=176
We move all terms to the left:
14+x^2-(176)=0
We add all the numbers together, and all the variables
x^2-162=0
a = 1; b = 0; c = -162;
Δ = b2-4ac
Δ = 02-4·1·(-162)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{2}}{2*1}=\frac{0-18\sqrt{2}}{2} =-\frac{18\sqrt{2}}{2} =-9\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{2}}{2*1}=\frac{0+18\sqrt{2}}{2} =\frac{18\sqrt{2}}{2} =9\sqrt{2} $

See similar equations:

| (x)2+4=0 | | 7e-5+12-3e=0 | | 2y-47=-3(y+9) | | 5x−2+x=9+3x+105x-2+x=9+3x+10 | | -3(x-3)+4x=-2(x+3) | | 4(x-3)=3(2+x) | | 4x=92x=12 | | -2(x-2)-3x=-6+5x | | 5(3/2x+6)=90 | | 2x+10=6x+40 | | 2x+7+(9/(2x-1))=0 | | 6+c/2=4 | | 5n+n=6n | | 7x+4=5x=20 | | -6(x-6)+10x=30 | | X+14+x-17+6x-5=180 | | B÷2+5=2b | | 1/3j+9=0 | | X+14+x-17=6x-5 | | 6x-5+x+14+x-17=180 | | 6x-5+x+14=x-17 | | 180=2x+5x+3x+50 | | x=2x+5x+3x+50 | | 7x-10+2x+5+2x+9=180 | | 55x-25=10x+20 | | -2=9x+12 | | 3x-5x+88x=4x+18 | | 14x-10x=3x | | -6x-2=3x+12 | | 4x-(75-x)=125 | | 4^x-8=1/1024 | | r=7/6r |

Equations solver categories